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SUMMARY 

An adaptive control system based on normalized variable-gain LMS filters is investi- 
gated. The finite impulse response of the nonparametric controller is adaptively estimated 
using a given reference model. Specifically, the following issues are addressed: The stability 
of the closed loop system is analyzed and heuristically established. Next, the adaptation 
process is studied for piecewise constant plant parameters. It is shown that by introducing 
a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation 
rate can be achieved. Finally, process noise at the plant output generally causes a biased 
estimate of the controller. By introducing a noise suppression scheme, this bias can be 
substantially reduced and the response of the adapted system becomes very close to that 
of the reference model. Extensive computer simulations validate these and demonstrate 
assertions that the system can rapidly adapt to random jumps in plant parameters. 

1 INTRODUCTION 

One of the primary goals in current control-systems research is the achievement of robustness 
to plant-parameter uncertainties and variations. The principal approaches are robust and 
adaptive control. In recent surveys and texts [l], 121, [3] , a nominal parametric plant 
model, describable by a finite state space equation, is assumed in the computation of the 
controller. The convergence and stability of the closed-loop system depends on the realism 
of this model, specifically on the correctness of the order and relative degree of its input- 
output transfer functions (41. 

The difficulties in assuring the realism of the plant model have thus far prevented the 
analytical accomplishments in adaptive control theory from translating into design meth- 
ods for practical processes. This paper explores an alternative approach to  adaptive control 
design through implementation of a “nonparametric” finite impulse response (FIR) realiza- 
tion of the controller. At the expense of excluding nonminimum phase plants and assuming 
that,  if necessary, stability can be provided by an inner feedback loop, i t  is demonstrated 
that the nonparametric FIR approach can provide a highly robust controller. 

The advent of adaptive filters [5], [SI, and their successful applications to identifi- 
cation and noise cancellation 171, and more recently to interference suppression in control 
systems [8], 191, has spurred interest in applying self-adjusting finite impulse response (FIR) 
filters as a building block in model reference adaptive control (MRAC) systems 1101, [l l] ,  
j12]. In this approach, the realization of the controller is not subject to the stringent condi- 
tions required in the parametric realizations. The large number of weights used in the FIR 
provides great flexibility and makes the controller insensitive to  uncertainties in the order 
and the relative degree of the plant model. 

In these previous studies, the controller is directly identified by means of an open-loop 
reference model and it converges to  a filtered inverse of the plant. This implies adaptive pole- 
zero cancellation. Consequently this method is restricted to  stable or stabilized minimum- 
phase plants. In the present paper, which is based on [lo] and [ll], the same restriction 
holds. A major prohlern in the integration of adaptive FIR filters into closed-loop control 
systems is the possible violation of the linearity of the error equation, which is a necessary 
condition for the global and uniform convergence of the adaptive algorithm. For this and 



other reasons, this approach in earlier work, such as [12], has resulted in open-loop control 
configurations only. In [lo], the integration of FIR adaptive filters in closed-loop MRAC 
systems is studied in detail and in [ I l l ,  a heuristic argument for the global convergence and 
stability of the  closed-loop system is given. 

The penalty for the robustness of adaptive FIR realizations such as LMS or recursive 
least squares (RLS) is a relatively slow adaptation to  plant parameter variations. The reason 
for this slow adaptation in LMS or RLS realizations, [13], is that rapid adaptation involves 
a large weight noise which results in deteriorated system response. This conflict cannot 
be resolved in a conventional LMS or RLS realization in which the adaptation gain or 
the forgetting factor, respectively, is constant. In this paper we present a “variable gain” 
algorithm which resolves this conflict t o  a great extent. As a result, substantially faster 
adaptation rates can be achieved. 

Another issue is that process noise causes bias in the FIR estimate of the controller. 
This bias can cause substantial distortion of the closed-loop response [lo]. In this paper we 
present a noise suppression scheme which substantially reduces controller bias. This scheme 
permits the independent design of system response and noise suppression without resorting 
to  prefiltering methods which involve an undesirable increase in system order. 

Throughout this paper, the conventional LMS algorithm is the basis of analysis and 
computer simulation. Recent results in fast recursive least squares (FRLS) 1131, [14] indicate 
that a further increase in adaptation rate and precision in parameter tracking is possible. 
I t  is expected that if FRLS is implemented with an adaptive forgetting factor, analogous 
to the variable-gain LMS presented in this paper, a still further increase in adaptation rate 
can be achieved. 

2 MODEL REFERENCE ADAPTIVE CONTROL USING 
THE LEAST-MEAN-SQUARE FILTER 

In t,his section, the basic control system, in which an LMS filter is used as the controller 
in a rnodel reference adaptive control scheme, is reviewed. .4n analysis of its properties, in 
particular the effect of noise, leads to  the improvements in the c.ontro1 system addressed in 
following sections. 

2.1 The Adaptive Finite Impulse Response Model 

It is well known that the continuous, Le., infinite, impulse response (IIR) of a system can be 
represented by a finite set of parameters by truncating and discretizing the response. The 
fidelity of the FIR depends on the fineness of discretization AT and the length of time Tf  
before truncation. The FIR is expressed in the form of a moving average model as shown 
in (fig. 1). The input to the model is sampled. Then the present and past N - 1 values 
are stored in a tapped-delay line. These values are then weighted and summed to form the 
model output yj .  The symbol g represents an operator which produces a given length of 
delay. The model contains two parameters - the number of weights N and the length of 
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the delay g. Equation 1 describes this model at time j : 

N-1 

i = O  

where 

The weights w; also have the subscript j ,  to  indicate their time-varying character. 
The model can be made adaptive by including an algorithm which adjusts the weights so 
that yj matches a desired signal d, as shown in figure 1. The adaptation is implemented 
by a gradient algorithm. The combination of the moving average model and a gradient 
algorithm is known as the LMS filter [7]. 

The filter error equation, where d, is the desired output, is 

e .  = d . - y .  = d . - w T z .  3 3 1  1 -1 -1 

The weights are adjusted by minimizing the square of the filter error e; as follows : 

The gradient of the error can be derived from equation (3) 

- aej l  - - --2.  
au; I w = w  -- -1 

-1 

leading to  a weight-update equation 

At+ = 2pejzj 

(3) 

(4) 

(5) 

(7) 

where p is a gain factor that is chosen in consideration of the stability of the gradient 
algorithm. In the traditional LMS filter, p is a constant. The properties of the LMS filter 
have been studied extensively [3],[5]. Some of them are summarized in section 2.4. This 
paper introduces an algorithm that allows a variable p.  One important aspect of the LMS 
filter is the assumption inherent in equation (6), which is that neither the desired signal d 
nor the, input to  the filter x are functions of the filter weights w;. 

2.2 The Control System Configuration 

Although the LMS filter itself is a discrete system, the entire control system will be analyzed 
as a continuous system. The fundamental building block of the model reference adaptive 
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A d  control (MRAC) in this paper is shown in figure 2 where s = is the differential operator, 
P ( s )  is the unknown plant, M ( s )  is a reference model, and G ( s )  is the controller which 
adapts such that P(s )G(s )  -+ M ( s )  t o  minimize the error e. The input signal is u and the 
plant output is z .  The controller G ( s )  and its associated adaptation algorithm are modeled 
as an LMS filter. It is clear from figure 2 that the signals d and z are independent of wj, 
which are the weights in G,  and that e is linear in w; satisfying the assumptions of the LMS 
filter. 

To obtain open-loop control, an exact copy of G,  G,, is placed before P (fig. 3). 
The controller G, now provides open-loop control of P; once G has properly adapted, the 
input-output relation (from u to z )  is determined by G P  = M .  It is apparent from figure 3 
that both d and z are now dependent on w;. This essentially violates one of the basic 
assumptions of the LMS filter. The issue will be addressed in the next section. 

In figure 4, closed-loop control is achieved by feeding back the signal y. Controllers 
G and G, now forms a controller with unity feedback. The signals w and u represent process 
noise and measurement noise, respectively. The block T, represents the desired closed-loop 
response of the system; its output is zr. 

The additional operator Gi provides integral control. It is needed to  satisfy the 
following two requirements: 

1. lim,,oT,(s) = 1 
2. Iim,,oM(s) = constant 

The first requirement is a standard specification for closed-loop control. The second is t o  
assure the realizability of C .  Requirement 2 specifies that M ,  and by implication G,  should 
not incorporate a free integrator. If that were the case, its infinite impulse response could 
not have been represented by a finite impulse response. With G P  = M ,  the closed-loop 
reference model T, is : 

which satisfies requirements 1 and 2. 

2.3 Convergence 

The signals d and z in figure 4 are dependent on the filter weights uti and therefore the 
convergence of the LMS filter is not assured. Because of this, it was initially reasoned 
[10],[11] that the system should be started in the adaptive-element mode (fig. 2) and 
then switched to the closed-loop control configuration (fig. 4) after the controller G had 
converged. However, the system can converge completely in the closed-loop configuration. 
A heuristic argument for this convergence, which is given in [ l l ] ,  is summarized here. 

For the following discussion, we will assume that there is no noise and that G; is 

1 
given by 

(9) G .  -- - 
S 

I -- 
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The filter error at the j - th  iteration is 

(A4 - GP)G e .  = 
s + G P  ui 3 

and the error gradient is 

which can also be written as 

Comparing equation (12) with equation (6), which is the required expression for the error 
gradient for the LMS filter, we note that g ' t j  represents g j  and that the difference lies in 
the second term in equation (12). It is not possible to compute the second term. Therefore, 
only the first term is used in the system implementation. The theoretical and implemented 
error-gradients are indicated by the use DT and DI, respectively. 

It is obvious that when the filter has converged correctly and the error e j  is small, 
DI will provide approximately the correct value ( - g i t j )  for the error gradient. However, 
the question is whether e, -+ 0 as j --+ 00. In [ll] it was shown that for a specific example, 
DI was close to  DT even with large errors in the filter weights, as at the start of adaptation. 
This was done by comparing the Bode phase and magnitude responses of DT and DI. The 
analysis indicated that the contribution of the second term in equation (12) was small and 
that the implemented error-gradient DI was sufficiently accurate for the convergence of the 
filter. This analysis has been confirmed by many computer runs using different plants and 
reference models, all of which have converged. 

3.4 Parameter Choices and Tradeoffs 

In the design of the control system shown in figure 4, it is necessary to choose the reference 
model M and the LMS filter parameters N,  AT, and /I. 

2.4.1 Reference Model 

The reference model M is selected in accordance with standard control-system-design prac- 
tices subject to  the condition that r(M) 2 r(P) ,  where r(.)  stands for the relative degree. 
For example, if Gi in equation (8) is chosen as Gi = l /s ,  then 

and r(Tm) = r(M) + 1 .  However, if it is desired that r(Tm) = r(M), then a valid form for 
G; is 

(14) 
al(s + ao) G; = -~ 

S 
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resulting in 

Generally, Tm is specified; M and G, are computed as demonstrated in section 3. 

2.4.2 Filter Parameters 

The adaptation process adjusts G so that GP -+ M .  Therefore, ideally G = M / P .  This 
means that the characteristic equation of G includes the poles of M and the zeros of P. 

In the discussion in section 2.1, we noted that the fidelity of the FIR depends on 
its length T j  and the time increment AT.  To ensure a sufficiently small truncation error, 
the following design rule will be adopted: let Re(A,;,,) be the real part of the smallest 
eigenvalue of M ( s ) ,  then choose Tj such that 

This ensures a truncation error of less than 2% [lo]. If the bandwidth of the filter input 
signal z is w ,  the sampling theorem would require the following condition: 

27r ‘II A T < - = -  
2w w (17) 

However, in accordance with control-system-design practice for stability and robustness, 
frequency components up to  10 times the open loop cutoff frequency WM should be repro- 
duced. Since G P  Z M ,  a conservative requirement is that G should reproduce all frequency 
components up to l O w ~ .  This leads to 

In general, equation (18) is more limiting than equation (17). Once the filter length Tj and 
tap spacing AT have been chosen, the number of weights is given by 

Ts N = - + ]  
AT 

So, the number of weights in the FIR is determined by the desired degree of fidelity of 
the FIR t o  the ideal IlR. The use of fewer parameters than those required by equations (16) 
through (19) will provide reduced, but perhaps still acceptable, performance. In principle, 
fewer parameters can be used without sacrificing performance by using nonuniform tap 
spacing [ 101. 

The gain factor p is chosen to assure the stability of the adaptation process. Define 
Rj as the correlation matrix of the input to the FIR: 
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where g, is the vector of the signals at the delay-line taps, (fig. 1). The matrix Rj is real, 
symmetric and non-negative definite. It can be shown [5] that to ensure stable convergence, 
a sufficient condition is 

o < p < - -  
Am,, 

where A,,, is the largest eigenvalue of R,. Since A,,, is difficult to  calculate, equation (21) 
is replaced by 

(21) 
1 

where t r (Rj )  is the trace of R,. Since tr (R,)  2 A,,,, equation (22) is more conservative 
than equation (21). In practive, p is determined by 

The factor f is chosen by the designer. It can be shown [SI, that the average exponential- 
convergence time constant in terms of the number of iterations is given by 

f N  r =  - 
4 

An additional factor which is involved in the choice of p is the misadjustment factor M,, 
which is defined as the excess parameter noise Ag, in g over the noise in the asymptotic 
Wiener solution [SI. It is given by 

(25) 
1 MU, = - 

Thus  the choice of f involves a fundamental conflict. A small f provides fast convergence 
but results in large parameter noise; conversely, a large f provides accurate convergence 
(low parameter noise) but takes longer to converge. 

f 

It should be rioted that there exists a direct relation between the response time of 
the reference model M and the speed of convergence of the controller G. The convergence 
time, in seconds, of G can be determined from eqiiat,ion (241 by 

Substituting equation (19) into equation (26) gives 

Since t6he smallest eigenvalue of M determines Tf, (eq. (16)), the faster M is, the smaller 
the resulting value of r,. Thus, the choice of M is instrumental in the speed of adaptation 
of G. 

2.5 Effect of Additive Noise 

Additive noise, whether process noise or measurement noise, produces errors in the estima- 
tion process and biases the filter weights. These effects are easily seen by an examination 
of the adaptation algorithm equations. With regard to  the effects on the weights of the 

7 



controller, process and measurement noise can be grouped together [ 101. From figure 4, the 
input t o  the LMS filter is Zm. 

zmj = zj + n j  (28) 
where n j  represents the noise in the plant output caused by both wj and vj.  The weight 
update produced by equation (7) is 

As the system converges, A x j  .+ 0, we obtain 

If p is small, the weights converge to a constant vector go given by 

Assuming that n is uncorrelated with .z and d 

If there were no noise, the weights would settle to  the Wiener solution g' 

- w* = E[ZjZ%] -lE [djtj] (35) 

Comparing equations (34) and (35), we see that n causes a bias in go. From equation (34) 
it follows that go < E*. 

The effect of noise is also reflected in the weight update equation (eq. (31)), which 
can be expanded to  

in which the component due to the noise is 

The noise also affects the filter output. 

T T o  y j  = Z m j E j  = ( t j  + ~ j )  (tu + Awnj) 

The component due to  noise is 
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If the misadjustment noise A K ~ ~  due to M, is included, the noise component of the filter 
output becomes 

(40) 
T T o  Ynj = Zj (Awml + Awnj) + nj (W + Azm, + Awnj) 

Equation (40) shows that the effect of noise on y is very complex and is not simply additive. 

Furthermore, equation (40) shows that the noise component ynj in yj  is a combination 
of additive and modulative terms. To reduce the intensity of noise in the system output zmj 
as well as to  reduce its effect on biasing G,  a scheme for noise suppression is investigated 
in the next section. 

3 NOISE SUPPRESSION BY INVERSE MODELING 

In section 2.5, the effect of system output noise n on the bias of the controller G was 
indicated. Such bias may affect the correct convergence G P  -+ M ,  and consequently 
distort the desired closed-loop response of T. For this reason, and because a fundamental 
objective is to suppress output noise, this issue is addressed in this section in conjunction 
with adaptive control. 

3.1 Noise Characteristics in Linear Time Invariant Systems 

Consider a stable, linear, time-invariant system described in SISO transfer function form 
T,(s) (fig. 5). The input is ~ ( t )  and the corresponding response ~ ( t )  is perturbed by 
output-referred additive noise n(t). I t  is first assumed that T,(s) is completely known. It 
can represent a closed-loop system in which a time-invariant minimum phase plant P ( s )  with 
relative degree r ( P )  2 0 is controlled by G(s)  (fig. 6). Measurement noise is represented 
by u and process noise by w .  

4 4  - 
u(s) 1 + G(s )P(s )  

G (s) P( s) T"(S) = - - 

Here G ( s )  is chosen to fulfill two requirements : 

1. 3-0 limT,(s) = 1 (42) 

2. r ( L )  2 r(P)  (43) 

where r(T,) is the relative degree of T,(s). Requirement 1 may imply integral control in 
G(s) . Requirement 2 implies physical realizability of G ( s ) ,  Le., 

3. r(G) 2 0 (44) 

where r(G) is the relative degree of G(s). 

The noise n due to u is given by : 

1 
n(s) = - .(s) = T,,(s)v(s) 

1 + G(s)P(sj  (45) 
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and n due to  w is 
n(s )  = P ( s )  W ( S )  = T,(s )w(s)  

1 + G(s )P(s )  

where T,,(s) and T,(s) are the corresponding noise-transfer functions. We make the follow- 
ing assumptions : 

1.  The integral control implied by requirement 1 is of an order not greater than 1, Le., 
not more than one open-loop pole at s = 0. 

2. r (G)  = 0. According to  requirement 2, this implies r(Tu) = r ( P ) .  

3 .  r ( P )  > 0. 

The following observations can be made. 

1.  The design of T ( s )  uniquely determines T,(s). 

2. From equation (45), r(T,,) = 0 and from assumption 1, T,(s) has a zero at s = 0, 
implying lim,,oT,(s) = 0, and with r(T,,) = 0, lim3-,m T,,(s) = 1.  Thus, the low- 
frequency components due to u ( s )  are attenuated in accordance with the slope of 
+2OdB/decade. High-frequency components are not attenuated. Since the bandwidth 
of the control system is by far smaller than that of white measurement noise, n(s)  
due to  u ( s )  is hardly affected by the control activity. On the other hand, uar(n), the 
variance of n,  due to u is assumed to  be negligibly small in its effect on biasing G .  

3.  From equation (46), r(T,) = r ( P )  and from assumption 1, T,(s) has a zero at 
s = 0 implying that lim,,oT,(s) = 0 and that the low-frequency slope of T,(s) 
is +2OdB/decade. It also implies that lim+,m T,(s) = 0 and the high-frequency slope 
is -20r (P)dB/decade. 

In linear systems design, practical design considerations related to the constraints on control 
activity and to the lack of information on unmodeled modes impose limitations on the 
admissible loop-gain response G P  and in view of equations (41), (45), and (46), on the 
noise suppression characteristics of the control system. 

3.2 Principle of Noise Suppression by Error Feedback 

In this section, the concept of noise suppression by error feedback in linear time-invariant 
systems is presented in two alternative forms. The analysis indicates the limitations of its 
practical implementation in linear time-invariant systems and shows the need for adaptive 
control. 

Having assumed linear-time invariant systems, the Laplace operator s will be dropped 
for simplicity of notation. It is initially assumed that the closed-loop system Tu is completely 
known so that our exact model Tm = Tu can be realized and its inverse 2';' can be formu- 
lated. However, since r(Tu) > 1,TG' cannot be implemented as this would imply r(T;') < 1 
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which is not realizable. Instead, an  approximate inverse TL'D having r(T;'D) = 0 can be 
realized. The function D is a linear transfer function with r ( D )  = r(Tu) > 1 which satisfies 

limD(s) = 1 
a-0 (47) 

Consider now the system shown in figure 7. This feedback structure, also known as 
error feedback has been used in different applications whenever the problem is to suppress 
noise while avoiding any major effect on the principal input-output relationship. 

Given that 
e = z,--2 = T u u , + n -  Tmu, 

U ,  = u - T;'DC 

z m  = Tuu, + n 

and since T;'Tm = 1 by definition, it is easily shown that : 

1 - D  
n Tu zm = 

i -  D + T ; ' T , D ~ +  i -  D + T ; ~ T , D  

The scheme in figure 7 that yields equation (51) will be referred to as type 1. Assuming that 
throughout the useful bandwidth of u and n, D E 1, and that T;'TU = 1, we have from 
equation (51) 

tm Y Tmu (52) 
Thus, ideally the noise is cancelled and the response z, is dictated by the model T,, Le., 
the noise cancellation does not interfere with the main transfer function Tu. 

Equation (51) can be rewritten in a more familiar form by dividing numerators and 
denominators by (1 -- D). Thus 

The equivalent scheme representing equation (53) is shown in figure 8. This formulation 
demonstrates that the attempt to implement D -+ 1, is equivalent to  requiring a large 
loop gain in figure 8. This may eventually cause instability. To illustrate this, consider the 
example: 

Then, 

which demonstrates that ao, which determines the bandwidth of D, is also the feedback loop 
gain. In root locus representation, equation(55) indicates asymptotes a t  590". Clearly, for 
a third-order D(s ) ,  the asymptotes would be f60" and 180", indicating possible instability. 

An alternative implementation (type 11) of error feedback for noise suppression is 
shown in figure 9. With the relations, 
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(57) 

zm = T u ~ , + n  (58) 

-1 1 
U, = u - T, D 

D' fulfills the same requirements as D except the requirement of equation (47). The solution 
of zm from equations (56) t o  (58) is 

If T&'Tu = 1 is fulfilled, the result is 

1 
TUu+ - z, = 

l + D I n  

Thus, noise suppression is accomplished by a large gain of D' in the useful frequency range 
of n.  

It is easily verified that in scheme type I, the noise suppression is accomplished by 
"pumping" n from z, into 2, whereas in type I1 the noise suppression is accomplished by 
the attenuation (1 + D')-' as shown in equation (60). However, substituting 

D D' = - 
1 - D  

equation (59) is changed to 

1 - D  
U+ n TU n =  

1 D I + -  
1 + TI;L~T,,& 1 + T G ~ T , , ~  1 - D +  T , ~ T , D  1 - D + T ~ T , D  z, = TU 

which is identical to  equation (51). Thus, given the transformation (61), schemes type I 
and type I1 are identical with respect to Tu and to  noise suppression. 

(62) 

Examination of either equations (51) or (59) discloses the following: 

I .  In order to  assure the desired response Tu(s) = z m ( s ) / u ( s ) ,  it is required that 

TGITu = 1 (63) 

2. If this requirement is fulfilled, i t  follows that 

Z, = T,u + (1  - 0)" 

In general, when Tu (s) is implemented by classical linear-feedback design as defined 
in equation (41), it cannot be made to provide the required robustness of Tu to  fulfill con- 
dition (63) under large parameter variations in P. Thus, noise suppression, as derived by 
equation (51) or (59), is practically incompatible with conventional linear feedback design. 
However, in conjunction with the concept of MRAC, in which T, is the reference model de- 
scribed in the Control System configuration section, condition (63) is assumed to  be fulfilled 
throughout a wide range of parameter variations. Given this a3sumption, equation (64) can 
be assumed to be correct. 
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In section 3.1, it has been shown that n(s), either due to  process noise w or mea- 
surement noise t), has a high-pass slope of +2OdB/decade at low frequencies. It is easily 
verified that  with the assumptions placed on D, (1  - D) has a +BOdB/decade high pass 
slope. The consequence therefore is that with noise cancellation, the closed-loop system, 
in accordance with figure 7 or figure 9, now has a +40dB per decade slope with respect 
to noise. Furthermore, the frequency breakpoint of D can be made considerably higher 
than that of Tu. Since, as is evident from equation (46), n due to  w is mostly a filtered 
low-frequency process, the high pass filtering by (1 - D)n in equation (64) can contribute 
to  substantial suppression of process noise. 

3.3 Example of Noise Suppression 

In this section, the effect of noise suppression is demonstrated by a numerical example. 
Assume a plant P with r ( P )  = 2, given by 

Let r(T,) = r ( P )  = 2, and let T, be 

Then, with r ( D )  = r(Tm) = 2, and let D(s )  be 

The open-loop transfer function according to  equation (8) is: 

with 

The function Gi(s) is not incorporated in the open-loop reference model M ( s )  because the 
integrator would have required an infinitely long FIR. Instead G; is incorporated into the 
closed-loop system as a series compensator in accordance with figure 4 (see Section 2.3). 
Since in the adapted system G P  + M, we have, in accordance with equation (46), 

The following values are c.hosen: 

P : aPll = 25; apI = 1 
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Tm : a,,, = 10; a,, = 10; amz = 6.5 

D : do = 150; dl = 20 

The plant P with the above values will be referred to  as the FAST plant. The process noise 
w(s)  is chosen as zero-mean white noise with unity Power Spectral Density (PSD). The 
variance of n(s), with the above numerical values for P ,  Tm, and D is 

uur(n) = 14.722 

In accordance with equation (64), the suppressed noise is 

n,  = (1 - 0). 

and explicitly 

2 2  

4 s )  
apl , s  ( S  + am2s + am, - l)(s + d1) 

(s2 + a p l s  + ap, , ) (s3 + amzs2 + a,,s + a,,,)(s2 + dls + 6) n, = 

With the above numerical values 

var(n, )  = 5.8359 

The ratio CY of the rms values of n and n,  is 

This result implies that because of the relatively high frequency of the resonant peak 
of n, ,  w Z 6 = 5 rad, n is not substantially suppressed by the noise cancellation scheme. 
However, if aPll = 4, referred to as the SLOW plant, and all the other numerical values are 
unchanged, the result is 

var(n) = 3.104 (77) 

uar(n,) = 0.219 (78) 
and a is, 

Q = 0.265 (79) 
which is a substantial-noise suppression. The low-frequency approximate transfer functions 
without and with noise suppression as derived from equations (71) and (74) are correspond- 
ingly: 

Equations (80) and (81) emphasize the trend indicated by the results given in equations (72), 
(75), (77), and (78) accordingly. Figures 10 and 11 show the frequency-response plots of 
equations (71) and (74) for the corresponding plant parameters ap,l = 25 and apI, = 4 and 
also show the levels of noise suppression that are achieved in t h t  two cases. 
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4 REALIZATION OF NOISE SUPPRESSION 

In section 3, suppression of additive noise by error feedback (shown in fig. 7) is presented 
for a linear system. For the fulfillment of condition (63), it is required that Tu adapt so 
that Tu + Tm. However, in view of equation (30) of ([lo]), the additive-output noise n 
excites weight noise in addition to  the intrinsic misadjustment noise in tuJ. This noise is 
modulative and it combines with n in a highly complex nonlinear manner. Consequently, 
noise suppression by linear error feedback as presented in section 3 cannot be as effective as 
that predicted by linear analysis, unless the adaptation gain, p = (ftr(R))-l << 1, which 
implies a very slow rate of adaptation. This conflict between the rate of adaptation and 
weight noise is a problem which cannot be resolved in basic estimators such as LMS or 
RLS. However, by introducing a modified LMS algorithm in which the adaptation gain p is 
monotonically related to  a suitable measure of the adaptation error e, this conflict can be 
resolved to  a substantial degree. 

4.1 Variable-Gain LMS Filter 

The parameters of the controlled plant P(s) are regarded as piecewise-constant time pro- 
cesses, i.e., at random times, any plant parameter may undergo an abrupt step-change to a 
new unknown value. It is required that the adaptive algorithm adjusts the controller G to 
the new value of P so as to enforce G P  -+ M as rapidly as possible. This implies that p 
should be assigned the largest permitted value po = (tr(R))-l. On the other hand, during 
the quiescent time intervals, p should be vanishingly small so as to reduce weight noise due 
to  n or to misadjustment. In equation (3), ej represents the adaptation error. Its squared 
averaged value is used to  determine p as follows: Let 

PO = ( f t r ( R j ) ) - '  (82) 

where f 2 1 so as to  fulfill the stability condition 0 < p~ < (tr(Rj))-'  and let 

N' - 
e2 = e; 

J 
j=1 

where N' I: N ,  and N is the number of lags in the LMS delay line. Define 

(83) 

We now choose a monotonic function p = p ( ~ )  as follows. Let Et  and E ,  be the threshold 
and saturation points respectively, of E .  Then, the actual p in the LMS is given by: 

Equation (85) is illustrated in figure 12. Thus, the initial convergence after a step change 
in plant parameters is determined by PO. For example, for f = 2, in accordance with 
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equation (24), the initial time constant of convergence in terms of the number of iterations 
is 

as long as E 2 E,. The convergence rate then slows down with the decreasing value of p. 
Eventually when E < E t ,  the weight noise vanishes and the algorithm effectively discontinues 
the weight updating in accordance with equation (85). Furthermore, ~1 can be set so that 
during the quiescent periods, E < gt is maintained even in the presence of noise n. The 
consequence is that the introduction of the threshold E~ inhibits the excitation of parameter 
noise. Accordingly, with the variable-gain LMS, the system output noise essentially retains 
its additive nature. Therefore noise suppression by linear error feedback can retain its 
effectiveness as presented in section 3. However, if plant parameters vary continuously and 
at relatively high rates, 3, and therefore E ,  cannot become small, so substantial parameter 
noise, and consequently system noise, will be present. 

4.2 System Description 

The complete adaptive-control system, incorporating noise suppression by error feedback in 
accordance with section 3, and variable adaptation gain p = p ( e )  (not explicitly shown), is 
described in figure 13. The two versions of error feedback, described in section 3.2, namely 
Type I and Type I1 are indicated by the solid and dashed lines, respectively. The reference 
model T, is the same as T,, and its response to u, z,, is used for comparison with the actual 
system output z .  The variable e is the adaptation error driving the gradient algorithm in 
accordance with equation (7); c is the system error in accordance with equation (48) used 
for noise suppression, and n, is the output of the noise suppression loop. 

5 COMPUTER SIMULATIONS 

The results of the simulation tests presented in this section illustrate the concepts discussed 
in the previous sections. In particular, the examples demonstrate 1) the performance of 
the system without the improvements presented in this paper, 2) the effects of using the 
variable gain algorithm, and 3) the noise suppression scheme. 

5.1 Implementat ion 

The following parameters were used in the simulation tests. 

1. For the majority of the examples, the “unknown” plant was 

25 
s2 + s -t- 25 

P ( s )  = 

which has a natural frequency w E 5 and a damping factor < = 0.1. This plant is 
occasionally referred to  as the FAST plant. In some examples, a step change in gain 
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occurs. The plant after the step change is 

I '  

50 
s2 + s + 25 P ( s )  = 

There are also a couple of examples which use a SLOW plant. These use 

4 P ( s )  = 
s 2 + s + 4  

which has a natural frequency w Y 2 and a damping factor < = 0.25 

2. The closed-loop reference model was 

s+lO 
ss -t 6 . 5 ~ ~  + 10s + 10 T ( s )  = 

and the open-loop reference model was 

M ( s )  = 10 
s2 + 6.5s + 9 

3. The ihput control signal u was a square wave with an amplitude of 1 and a period of 
10 sec. 

4. The integral controller Gi(s) was 

O.l(s + 10) 
Gi(6) = 

S 

5 .  For the runs which included the noise suppression scheme, the filter D ( s )  was 

150 
s2 + 20s + 150 D(s )  = 

6. All initial conditions of the various systems were set to zero. The initial weights of 
the controllers G and G ,  were 

1 i = o  
0 i =  1, ..., N [ w; r= 

Note that if all the weights of the controllers are zero, the system cannot start because 
no signal gets past the G,. The above choice of weights is arbitrary. 

7. The parameters for the variable gain scheme were 

E: = 0.05 
E $  - - 1.00 
f = 2  

8. The filter parameters were 21 weights (N = 21) and the tap spacing was 0.1 sec 
(AT := O.l), resulting in a filter with Tj = 2.0 sec. These parameters were calculated 
using equations (16)-(19) and M ( s )  of item 2. 

9. The weights of the controllers G and G, were updated every AT sec. 
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10. In all cases, all of the blocks (see block diagram, fig. 13) except for the controllers G 
and G,, were modelled in continuous time. A sixth-order Runge-Kutta integration 
scheme was used with an integration step size of dt = 0.002 sec. The outputs of G 
and G, were also calculated every dt sec. 

11. When included, the process noise tu was zero-mean white noise, with a standard 
deviation u, of 0.2, and was sampled every dt sec. 

12. The simulations were run for 50 sec (25,000 iterations). 
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5.2 Results 

Table 1 summarizes the various configurations used in the eight simulation runs; the results 
are presented in figures 14-21. 

Run 1 has the traditional LMS filter, with a constant p and f = 2; its results 
are shown in figure 14. Figure 14a, which compares the actual and reference responses, 
demonstrates poor performance. It also shows the nonlinearity of the system with the 
response to  positive steps in the input being very different than the response to negative 
steps. Figure 14b shows the time history of some of the filter weights. As expected with 
the high gain (f = 2), the weights are very noisy. 

A smaller gain (f = 10) is used with a constant p in run 2, figure 15. Comparing 
figure 15a with figure 14a, we note a considerable reduction in the weight noise. A step 
change in the plant gain, doubled from 1 to  2, occurs at 27.5 sec. The system adapts to 
this plant change, although the adaptation rate is relatively slow. Figure 15b shows the 
time history of some of the filter weights. It shows that the weights responded to the plant 
change. The weights are much less noisy than in figure 14b. 

The variable p scheme is introduced in run 3. Figure 16a shows that the system 
performance is quite similar t o  that of run 2, of figure 15a. However, the plot of the 
weights, figure 16b, shows that the weights, once settled, are almost noise-free. Comparing 
this with figure 15b, the advantage of the variable-gain LMS is clear. However, the penalty 
one pays for shutting off the adaptation (;.e., when E <: ~ t )  can be seen in the final section 
of Figure 16(a). The adaptation has stopped after 33 sec because the filter error is small, 
but the error in the system response is still noticeable. This can be improved by reducing 
the threshold ~t in the variable p scheme. 

In run 4 the noise suppression scheme is included. However, no process or mea- 
surement noise is introduced, and therefore the noise suppression loop can be regarded as 
simply providing additional feedback. The system performance as shown in figure 17a has 
improved considerably compared with figure 16a. Furthermore, the transient caused by 
the plant change a t  27.5 sec is much better than in run 3. Figure 17b, the time history of 
the filter weights, shows that the weights initially responded slightly more slowly than the 
corresponding change in figure 16b. This is caused by the noise suppression loop, which 
modifies il to us. The signal us excites the adaptive scheme to a lesser extent than u. 
Figure 17(c) shows the output of the noise suppression loop (n, in fig. 13). The significance 
of figure 17c will be discussed in section 5.3. Finally, figure 17d shows e,, the error in the 



= 0.042 

system output (e, = z, - z ) ,  for runs 3 and 4. The dotted line is for run 3, without the 
noise suppression loop, and the solid line is for run 4, with noise suppression. 

In run 5, process noise is added. The noise w is zero-mean white noise with standard 
deviation u, = 0.2 and is sampled every dt sec (dt = 0.002). The noise suppression loop is 
not used in run 5. Figure 18a shows the actual and reference system output and figure 18b 
shows the time history of some of the filter weights. In spite of the presence of process 
noise, the weight noise is negligible. However, the process noise clearly corrupts the system 
output. In run 6, the same process noise was added, but the noise suppression loop was 
used. These results are shown in figures 19a and 19b. As expected, the effect of the process 
noise on the system output is much smaller in run 6. Figure 19c compares e, for runs 5 and 
6. 

In runs 7 and 8, the SLOW plant is used, without and with noise suppression, 
respectively, with the same process noise (a,,, = 0.2) as in runs 5 and 6. Figures 20 and 
21a show the system responses in the two cases. Figure 21b shows the error e, for the two 
cases. 

5.3 Discussion 

In the configuration of runs 4,6, and 8 there are in essence two feedback loops, the adaptive 
controller G and the noise suppression loop. It is important to  note the differences in their 
roles. The adaptive controller has to  adjust itself (its weights) such that PG + M. The 
noise suppression loop has to minimize the undesired perturbations in system response 
caused by noise and other disturbances. For run 4, figure 17c shows the output of the noise 
suppression loop (n, in fig. 13). Clearly, the large peak caused by the plant change occurs 
before G has had time to  adjust. As G adjusts, the noise suppression loop returns to its 
normal level of performance. This demonstrates that the two feedback loops are fulfilling 
their distinct roles and not interfering with each other. 

To compare the simulation results with the analysis of section 3, the root mean 
square (rms) values of e, were calculated. These are presented in table 2. For runs 3 and 4, 
rrns(e,) was calculated over the range 5 to 25 sec - after the initial transient. had vanished 
and before the jurnp in plant gain had occurred. For runs 5 and 6, the range 5 to  50 sec 
was used. For runs 7 and 8, the range 10 to  50 sec was used. Comparing run 3 with 4, 
run 5 with 6, and run 7 with 8 shows that in each case the addition of the noise suppression 
decreased the error e, by more than a factor of 3. 

We note that there is an increase in the system error e, from runs 3 and 4 to runs 5 
and 6. This increase is caused by the addition of process noise w .  The error due to w is 
statistically independent of the the error from other causes (primarily the mismatch between 
PG and M). We can now calculate the noise a t  the output due to  process noise. By adding 
subscripts to  e, to  refer to run numbers, and given that n and n, represent output-referred 
noise without and with noise suppression, respectively (from section 3.3) 
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The analysis of section 3.3, which assumed that the noise w had a unity PSD, resulted 
in (from equations (72) and (75)) 

uur(n) = 14.722 
uur(n,) = 5.8359 

The PSD of w used in the simulation is approximately given by 

The predicted values of on and on. are therefore given by 

On = JF‘SD(w)*uur(n) = 0.0343 

on# = dPSD(w)*uar(n , )  = 0.0216 (92) 

These values are close to  the simulation results of equations (87) and (88). For the results 
to match the analysis exactly, neZ5 should be smaller by 5% and aeLG should be 12% larger. 
These small errors can be attributed t o  two main causes. The first is that equation (90) is an 
approximation. Secondly, the sample size is small. The number of statistically independent 
samples in e, which have a dominant frequency of 5 rad/sec (the lightly damped mode of 
the plant) in a run of 50 sec is about 50. Therefore in runs 3 and 4 there are only about 
20 independent samples. In view of these two points, the match between the analysis and 
simulation can be considered to be very good. 

Runs 7 and 8 with the SLOW plant are equivalent to  runs 5 and 6 with the FAST 
plant. Two more runs with the SLOW plant, equivalent to  runs 3 and 4, were conducted 
(but not presented here) to calculate the effect of the noise. The results were 

6, = 0.011 (93) 

6nn = 0.003 (94) 

The predicted values are 
on = 0.0158 (95) 

on* = 0.0013 (96) 

These are very close to  the simulation results. A change of only 2% in oeZ7 and b e z 8  would 
make the results match exactly. 

The measure of the effectiveness of noise suppression developed in section 3.3 is 

Q = (2) (97) 

For the FAST plant, use of equations (87) and (88) gives the result a = 0.36, meaning that 
the noise suppression scheme reduced the effect of process noise w by about 64%. This is 
much better than the predicted value of CY = 0.62 from equation (76). The reason for the 
better-than-predicted performance is that the noise suppression scheme and the adaptive 
controller reinforce each other. The reduced level of noise leads to a more accurate C, which 
in turn leads to better noise suppression. This constructive interaction between the two 
feedback loops is one of the major advantages of the the total system. 
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I .  

To demonstrate, let ap be the predicted value of a which is based on an assumption 
of a perfect G= G,: 

By contrast, a,, the simulation result, is formed from one run with noise suppression pro- 
ducing a “good” G, G,, and one run without noise suppression producing a “fair” G, Gf:  

Note that ap uses the same G for both its numerator and denominator. Assume that oP is 
a good prediction if the G is consistent. Then, using Gf 

Since Gg is better than Gf  

or 
a, Qp 

This qualitative analysis leads to  the conclusion that a, will be lower than ap;  the noise 
suppression will be more effective than predicted because of the improvement in G. 

For the SLOW plant, the simulation result was a = 0.24. The noise suppression 
was able to  reduce the effect of the process noise by about 76%. This is very close to  the 
predicted value of Q = 0.265 from equation (79). Again, the simulation results are better 
than predicted. In this case the difference is small because the system was able to converge 
to the correct value of G even without the noise suppression loop. 

6 CONCLUSIONS 

It has been shown that an adaptive filter can perform as a nonparametric controller in a 
closed-loop system. Although the error equation in the closed-loop system is not strictly 
linear, the system converges so as to establish a linear error equation in the adapted system. 
In the system discussed in this paper, the adaptive element is essentially an LMS filter. A 
variable gain scheme was introduced in which the gradient gain is a monotonic function of 
the adaptation error of the controller. This made it possible to  have fast adaptation without 
large misadjustment noise. A model-inverse noise suppression scheme was also introduced. 
The noise-suppression and variable-gain schemes worked together in a mutually beneficial 
way to provide excellent noise suppression, system tracking, and response to  plant changes. 

In the present system, the elements of the input vector to  the adaptive filter are not 
orthogonal. I t  is anticipated that a substantial reduction in the adaptation time can be 
achieved by an adaptive filter based on an orthogonalized input vector, such as recursive 
least squares or lattice filters, with successful implementation of an adaptive forgetting 
factor. 
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TABLE 1 .- SIMULATION RUNS 

Constant or 
variable p 

C 
C 
V 
V 
V 
V 
V 
V 

Run No. f (JW 

2 0  
10 0 
2 0  
2 0  
2 0.2 
2 0.2 
2 0.2 
2 0.2 

Noise 
suppression 

No 
No 
No 
Yes 
No 
Yes 
No 

I Yes 

Step 
change 

No 
Yes 
Yes 
Yes 
No 
No 
No 
No 

Plant 

FAST 
FAST 
FAST 
FAST 
FAST 
FAST 
SLOW 
SLOW 

Figures 

14a,b 
15a,b 
16a,b; 17d 
17a,b,c,d 
18a,b; 19c 
19a,b,c 
20; 21b 
21a,b 

TABLE 2.- ERROR IN SYSTI 

Run No 

vf OUTPUT FOR RUNS 3 TO 8 

nns(e,) 

0.104 
0.026 
0.1 12 
0.030 
0.052 
0.0 13 

23 



f SAMPLER 

TAPPED 
DELAY 
LINE 

I 

I 'j-(N-l) 
"(N- l ) j  e- - e- - I 

Figure 1 .- Adaptive finite-impulse-response model. 

Figure 2.- MRAC adaptive element. 
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Figure 3.- Open-loop control system. 
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Figure 4.- Closed-loop control system. 

Figure 5.- SISO system. 
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Figure 6.- Closed-loop system. 

Figure 7.- Scheme for noise suppression by error feedback, type I. 
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Figure 8.- Equivalent scheme for noise 
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Figure 9.- Scheme for noise suppression by error feedback, type 11. 
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Figure 10.- Bode magnitude plot for output noise to  input noise transfer function, FAST plant. 
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Figure 1 1 .- Bode magnitude plot for output noise to input noise transfer function, SLOW plant. 
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Figure 12.- Adaptation gain as a function of  a measure of filter error. 



Figure 13.- Closed-loop control system with noise suppression. 
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Figure 14.- Results of Run 1 .  (a) Actual and reference system output. (b) Time history of  some filter 
weights. 
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Figure 15.- Results of Run 2. (a) Actual and reference system output. (b) Time history of some filter 
weights. 
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Figure 16.- Results of Run 3. (a) Actual and reference system output. (b) Time history of some filter 
weights . 
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Figure 17.- Results of Run 4. (a) Actual and reference system output. (b) Time history of some filter 
weights . 
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Figure 17.- Concluded. (c) Output of noise suppression loop. (d) Error in system output for runs 3 and 4. 
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Figure 18.- Results of Run 5 .  (a) Actual and reference system output. (b) Time history of some filter 
weights. 
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Figure 19.- Results of Run 6. (a) Actual and reference system output. (b) Time history of some filter 
weights . 
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Figure 19.- Concluded. (c) Error in system output for runs 5 and 6. 
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Figure 20.- Results of Run 7 .  Actual and reference system output. 
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Figure 2 1 .- Results of Run 8. (a) Actual and reference system output. (b) Error in system output for 
runs 7 and 8.  
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